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Abstract

The success of neural networks on a diverse set
of NLP tasks has led researchers to question
how much do these networks actually know
about natural language. Probes are a natural
way of assessing this. When probing, a re-
searcher chooses a linguistic task and trains
a supervised model to predict annotation in
that linguistic task from the network’s learned
representations. If the probe does well, the
researcher may conclude that the representa-
tions encode knowledge related to the task. A
commonly held belief is that using simpler
models as probes is better; the logic is that
such models will identify linguistic structure,
but not learn the task itself. We propose an
information-theoretic formalization of probing
as estimating mutual information that contra-
dicts this received wisdom: one should always
select the highest performing probe one can,
even if it is more complex, since it will result
in a tighter estimate. The empirical portion
of our paper focuses on obtaining tight esti-
mates for how much information BERT knows
about parts of speech in a set of five typologi-
cally diverse languages that are often underrep-
resented in parsing research, plus English, to-
taling six languages. We find BERT accounts
for only at most 5% more information than tra-
ditional, type-based word embeddings.

1 Introduction

Neural networks are the backbone of modern state-
of-the-art Natural Language Processing (NLP) sys-
tems. One inherent by-product of training a neural
network is the production of real-valued represen-
tations. Many speculate that these representations
encode a continuous analogue of discrete linguis-
tic properties, e.g., part-of-speech tags, due to the
networks’ impressive performance on many NLP
tasks (Belinkov et al., 2017). As a result of this
speculation, one common thread of research fo-

cuses on the construction of probes, i.e., super-
vised models that are trained to extract the linguis-
tic properties directly (Belinkov et al., 2017; Con-
neau et al., 2018; Peters et al., 2018b; Zhang and
Bowman, 2018; Tenney et al., 2019; Naik et al.,
2018). A syntactic probe, then, is a model for ex-
tracting syntactic properties, such as part-of-speech,
from the representations (Hewitt and Liang, 2019).

In this work, we question what the goal of prob-
ing for linguistic properties ought to be. Infor-
mally, probing is often described as an attempt
to discern how much information representations
encode about a specific linguistic property. We
make this statement more formal: We assert that
the goal of probing ought to be estimating the mu-
tual information (Cover and Thomas, 2012) be-
tween a representation-valued random variable and
a linguistic property-valued random variable. This
formulation gives probing a clean, information-
theoretic foundation, and allows us to consider
what “probing” actually means.

Our analysis also provides insight into how to
choose a probe family: We show that choosing
the highest-performing probe, independent of its
complexity, is optimal for achieving the best esti-
mate of mutual information (MI). This contradicts
the received wisdom that one should always select
simple probes over more complex ones (Alain and
Bengio, 2017; Liu et al., 2019; Hewitt and Man-
ning, 2019). In this context, we also discuss the re-
cent work of Hewitt and Liang (2019) who propose
selectivity as a criterion for choosing families of
probes. Hewitt and Liang (2019) define selectivity
as the performance difference between a probe on
the target task and a control task, writing “[t]he se-
lectivity of a probe puts linguistic task accuracy in
context with the probe’s capacity to memorize from
word types.” They further ponder: “when a probe
achieves high accuracy on a linguistic task using a
representation, can we conclude that the represen-



tation encodes linguistic structure, or has the probe
just learned the task?” Information-theoretically,
there is no difference between learning the task and
probing for linguistic structure, as we will show;
thus, it follows that one should always employ the
best possible probe for the task without resorting
to artificial constraints.

In support of our discussion, we empirically ana-
lyze word-level part-of-speech labeling, a common
syntactic probing task (Hewitt and Liang, 2019;
Sahin et al., 2019), within our framework. Working
on a typologically diverse set of languages (Basque,
Czech, English, Finnish, Tamil, and Turkish), we
show that the representations from BERT, a com-
mon contextualized embedder, only account for at
most 5% more of the part-of-speech tag entropy
than a control. These modest improvements sug-
gest that most of the information needed to tag
part-of-speech well is encoded at the lexical level,
and does not require the sentential context of the
word. Put more simply, words are not very ambigu-
ous with respect to part of speech, a result known
to practitioners of NLP (Garrette et al., 2013). We
interpret this to mean that part-of-speech labeling
is not a very informative probing task.

We also remark that formulating probing
information-theoretically gives us a simple, but
stunning result: contextual word embeddings, e.g.,
BERT (Devlin et al., 2019) and ELMo (Peters et al.,
2018a), contain the same amount of information
about the linguistic property of interest as the origi-
nal sentence. This follows naturally from the data-
processing inequality under a very mild assumption.
What this suggests is that, in a certain sense, prob-
ing for linguistic properties in representations may
not be a well grounded enterprise at all.

2 Word-Level Syntactic Probes for
Contextual Embeddings

Following Hewitt and Liang (2019), we consider
probes that examine syntactic knowledge in contex-
tualized embeddings. These probes only consider
a single token’s embedding and try to perform the
task using only that information. Specifically, in
this work, we consider part-of-speech (POS) la-
beling: determining a word’s part of speech in a
given sentence. For example, we wish to determine
whether the word love is a NOUN or a VERB. This
task requires the sentential context for success. As
an example, consider the utterance “love is blind”
where, only with the context, is it clear that love is

a NOUN. Thus, to do well on this task, the contex-
tualized embeddings need to encode enough about
the surrounding context to correctly guess the POS.

2.1 Notation
Let S be a random variable ranging over all possi-
ble sequences of words. For the sake of this paper,
we assume the vocabulary V is finite and, thus, the
values S can take are in V∗. We write s ∈ S as
s = w1 · · ·w|s| for a specific sentence, where each
wi ∈ V is a specific word in the sentence and the
position i ∈ N+. We also define the random vari-
able W that ranges over the vocabulary V . We
define both a sentence-level random variable S and
a word-level random variable W since each will be
useful in different contexts during our exposition.

Next, let T be a random variable whose pos-
sible values are the analyses t that we want to
consider for word wi in its sentential context,
s = w1 · · ·wi · · ·w|s|. In this work, we will fo-
cus on predicting the part-of-speech tag of the ith

word wi. We denote the set of values T can take
as the set T . Finally, let R be a representation-
valued random variable for the ith word wi in a sen-
tence derived from the entire sentence s. We write
r ∈ Rd for a value of R. While any given value r
is a continuous vector, there are only a countable
number of valuesR can take. To see this, note there
are only a countable number of sentences in V∗.

Next, we assume there exists a true distribution
p(t, s, i) over analyses t (elements of T ), sentences
s (elements of V∗), and positions i (elements of
N+). Note that the conditional distribution p(t |
s, i) gives us the true distribution over analyses t for
the ith word in the sentence s. We will augment this
distribution such that p is additionally a distribution
over r, i.e.,

p(r, t, s, i) = δ(r | s, i) p(t, s, i) (1)

where we define the augmentation as a Dirac’s delta
function

δ(r | s, i) = 1{r = BERT(s)i} (2)

Since contextual embeddings are a deterministic
function of a sentence s, the augmented distribu-
tion in eq. (1) has no more randomness than the
original—its entropy is the same. We assume the
values of the random variables defined above are
distributed according to this (unknown) p. While
we do not have access to p, we assume the data in
our corpus were drawn according to it. Note that



W—the random variable over possible words—is
distributed according to the marginal distribution

p(w) =
∑
s∈V∗

|s|∑
i=1

δ(w | s, i) p(s, i) (3)

where we define the deterministic distribution

δ(w | s, i) = 1{si = w} (4)

2.2 Probing as Mutual Information
The task of supervised probing is an attempt to
ascertain how much information a specific repre-
sentation r tells us about the value of t. This is
naturally expressed as the mutual information, a
quantity from information theory:

I(T ;R) = H(T )−H(T | R) (5)

where we define the entropy, which is constant with
respect to the representations, as

H(T ) =−
∑
t∈T

p(t) log p(t) (6)

and where we define the conditional entropy as

H(T | R) =

∫
p(r) H (T | R = r) dr (7)

=
∑
s∈V∗

|s|∑
i=1

p(s, i) H (T | R = BERT(s)i)

the point-wise conditional entropy inside the sum
is defined as

H(T | R = r) = −
∑
t∈T

p(t | r) log p(t | r) (8)

Again, we will not know any of the distributions re-
quired to compute these quantities; the distributions
in the formulae are marginals and conditionals of
the true distribution discussed in eq. (1).

2.3 Bounding Mutual Information
The desired conditional entropy, H(T | R) is not
readily available, but with a model qθ(t | r) in
hand, we can upper-bound it by measuring their
empirical cross entropy

H(T | R) := − E
(t,r)∼p(·,·)

[log p(t | r)] (9)

= − E
(t,r)∼p(·,·)

[
log

p(t | r)qθ(t | r)

qθ(t | r)

]
= − E

(t,r)∼p(·,·)

[
log qθ(t | r) + log

p(t | r)

qθ(t | r)

]
= Hqθ(T | R)︸ ︷︷ ︸

estimate

− E
r∼p(·)

KL(p(· | r) || qθ(· | r))︸ ︷︷ ︸
expected estimation error

where Hqθ(T | R) is the cross-entropy we obtain
by using qθ to get this estimate. Since the KL
divergence is always positive, we may lower-bound
the desired mutual information

I(T ;R) := H(T )−H(T | R)

≥ H(T )−Hqθ(T | R) (10)

This bound gets tighter, the more similar (in the
sense of the KL divergence) qθ(· | r) is to the true
distribution p(· | r).

Bigger Probes are Better. If we accept mutual
information as a natural measure for how much rep-
resentations encode a target linguistic task (§2.2),
then the best estimate of that mutual information
is the one where the probe qθ(t | r) is best at the
target task. In other words, we want the best probe
qθ(t | r) such that we get the tightest bound to the
actual distribution p(t | r). This paints the question
posed by Hewitt and Liang (2019), who write

“when a probe achieves high accuracy on
a linguistic task using a representation,
can we conclude that the representation
encodes linguistic structure, or has the
probe just learned the task?”

as a false dichotomy.1 From an information-
theoretic view, we will always prefer the probe
that does better at the target task, since there is no
difference between learning a task and the repre-
sentations encoding the linguistic structure.

3 Control Functions

To place the performance of a probe in perspective,
Hewitt and Liang (2019) develop the notion of a
control task. Inspired by this, we develop an ana-
logue we term control functions, which are func-
tions of the representation-valued random variable
R. Similar to Hewitt and Liang (2019)’s control
tasks, the goal of a control function c(·) is to place
the mutual information I(T ;R) in the context of a
baseline that the control function encodes. Control
functions have their root in the data-processing in-
equality (Cover and Thomas, 2012), which states
that, for any function c(·), we have

I(T ;R) ≥ I(T ; c(R)) (11)

In other words, information can only be lost by
processing data. A common adage associated with
this inequality is “garbage in, garbage out.”

1Assuming that the authors intended ‘or’ here as strictly
non-inclusive.



3.1 Type-Level Control Functions
We will focus on type-level control functions in
this paper; these functions have the effect of decon-
textualizing the embeddings. Such functions allow
us to inquire how much the contextual aspect of
the contextual embeddings help the probe perform
the target task. To show that we may map from
contextual embeddings to the identity of the word
type, we need the following assumption about the
embeddings.

Assumption 1. Every contextualized embedding
is unique, i.e., for any pair of sentences s, s′ ∈ V∗,
we have (s 6= s′) || (i 6= j) ⇒ BERT(s)i 6=
BERT(s′)j for all i ∈ {1, . . . |s|} and j ∈
{1, . . . , |s′|}.

We note that Assumption 1 is mild. Contextu-
alized word embeddings map words (in their con-
text) to Rd, which is an uncountably infinite space.
However, there are only a countable number of
sentences, which implies only a countable number
of sequences of real vectors in Rd that a contex-
tualized embedder may produce. The event that
any two embeddings would be the same across
two distinct sentences is infinitesimally small.2 As-
sumption 1 yields the following corollary.

Corollary 1. There exists a function id : Rd → V
that maps a contextualized embedding to its word
type. The function id is not a bijection since multi-
ple embeddings will map to the same type.

Using Corollary 1, we can show that any non-
contextualized word embedding will contain no
more information than a contextualized word em-
bedding. More formally, we do this by constructing
a look-up function e : V → Rd that maps a word
to a word embedding. This embedding may be one-
hot, randomly generated ahead of time, or the out-
put of a data-driven embedding method, e.g. fast-
Text (Bojanowski et al., 2017). We can then con-
struct a control function as the composition of the
look-up function e and the id function id. Using
the data-processing inequality, we can prove that
in a word-level prediction task, any non-contextual
(type level) word-embedding will contain no more
information than a contextualized (token level) one,
such as BERT and ELMo. Specifically, we have

I(T ;R) ≥ (12)

I(T ;id(R)) = I(T ;W ) ≥ I(T ; e(W ))

2Indeed, even if we sampled every embedding randomly
from a d-dimensional Gaussian, the probability that we would
ever sample the same real value is zero.

This result3 is intuitive and, perhaps, trivial—
context matters information-theoretically. How-
ever, it gives us a principled foundation by which
to measure the effectiveness of probes as we will
show in §3.2.

3.2 How Much Information Did We Gain?
We will now quantify how much a contextualized
word embedding knows about a task with respect to
a specific control function c(·). We term how much
more information the contextualized embeddings
have about a task than a control variable the gain,
which we define as

G(T,R, c) = I(T ;R)− I(T ; c(R)) (13)

= H(T | c(R))−H(T | R) ≥ 0

The gain function will be our method for measuring
how much more information contextualized repre-
sentations have over a controlled baseline, encoded
as the function c. We will empirically estimate this
value in §6.

Interestingly enough, the gain has a straightfor-
ward interpretation.

Proposition 1. The gain function is equal to the
following conditional mutual information

I(T ;R | c(R)) = G(T,R, c) (14)

Proof.

I(T ;R | c(R)) := I(T ;R)− I(T ;R; c(R))

= I(T ;R)− I(T ; c(R))

= G(T,R, c)

The jump from the first to the second equality fol-
lows since R encodes all the information about T
provided by c(R) by construction.

Proposition 1 gives us a clear understanding of
the quantity we wish to estimate: It is how much
information about a task is encoded in the represen-
tations, given some control knowledge. If properly
designed, this control transformation will remove
information from the probed representations.

3.3 Approximating the Gain
The gain, as defined in eq. (13), is intractable to
compute. In this section we derive a pair of varia-
tional bounds on G(T,R, e)—one upper and one

3Note that although this result holds in theory, in practice
the functions id and e(·) might be arbitrarily hard to estimate.
This is discussed in length in §4.3.



lower. To approximate the gain, we will simulta-
neously minimize an upper and a lower-bound on
eq. (13). We begin by approximating the gain in
the following manner

G(T,R, e) ≈ (15)

Hqθ2(T ; c(R))−Hqθ1(T | R)︸ ︷︷ ︸
estimated Gqθ (T,R,e)

these cross-entropies can be empirically estimated.
We will assume access to a corpus {(ti, ri)}Ni=1

that is human-annotated for the target linguistic
property; we further assume that these are samples
(ti, ri) ∼ p(·, ·) from the true distribution. This
yields a second approximation that is tractable:

Hqθ(T ;R) ≈ 1

N

N∑
i=1

log qθ(ti | ri) (16)

This approximation is exact in the limit N → ∞
by the law of large numbers.

We note the approximation given in eq. (15) may
be either positive or negative and its estimation
error follows from eq. (9)

∆ = E
r∼p(·)

KL(p(· | r) || qθ1(· | r)) (17)

− E
r∼p(·)

KL(p(· | c(r)) || qθ2(· | c(r)))

= KLqθ1(T,R)−KLqθ2(T, c(R))

where we abuse the KL notation to simplify the
equation. This is an undesired behavior since
we know the gain itself is non-negative, by the
data-processing inequality, but we have yet to
devise a remedy.

We justify the approximation in eq. (15) with
a pair of variational bounds. The following two
corollaries are a result of Theorem 2 in App. A.

Corollary 2. We have the following upper-bound
on the gain

G(T,R, e) (18)

≤ Gqθ(T,R, e)+KLqθ1(T,R)

Corollary 3. We have the following lower-bound
on the gain

G(T,R, e) (19)

≥ Gqθ(T,R, e)−KLqθ2(T, c(R))

The conjunction of Corollary 2 and Corollary 3
suggest a simple procedure for finding a good ap-
proximation: We choose qθ1(· | r) and qθ2(· | r)

so as to minimize eq. (18) and maximize eq. (19),
respectively. These distributions contain no over-
lapping parameters, by construction, so these two
optimization routines may be performed indepen-
dently. We will optimize both with a gradient-based
procedure, discussed in §6.

4 Understanding Probing
Information-Theoretically

In §3 we developed an information-theoretic frame-
work for thinking about probing contextual word
embeddings for linguistic structure. However, we
now cast doubt on whether probing makes sense as
a scientific endeavour. We prove in §4.1 that con-
textualized word embeddings, by construction, con-
tain no more information about a word-level syn-
tactic task than the original sentence itself. Never-
theless, we do find a meaningful scientific interpre-
tation of control functions. We expound upon this
in §4.2, arguing that control functions are useful,
not for understanding representations, but rather for
understanding the influence of sentential context
on word-level syntactic tasks, e.g., labeling words
with their part of speech.

4.1 You Know Nothing, BERT
To start, we note the following corollary

Corollary 4. It directly follows from Assumption 1
that BERT is a bijection between sentences s and
sequences of embeddings 〈r1, . . . , r|s|〉. As BERT is
a bijection, it has an inverse, which we will denote
as BERT−1.

Theorem 1. The function BERT(S) cannot provide
more information about T than the sentence S it-
self.

Proof.

I(T ;S) ≥ I(T ; BERT(S)) (20)

≥ I(T ; BERT−1(BERT(S)))

= I(T ;S)

This implies I(T ;S) = I(T ; BERT(S)). We remark
this is not a BERT-specific result—it rests on the
fact that the data-processing inequality is tight for
bijections.

While Theorem 1 is a straightforward applica-
tion of the data-processing inequality, it has deeper
ramifications for probing. It means that if we search
for syntax in the contextualized word embeddings
of a sentence, we should not expect to find any



more syntax than is present in the original sentence.
In a sense, Theorem 1 is a cynical statement: the
endeavour of finding syntax in contextualized em-
beddings sentences is nonsensical. This is because,
under Assumption 1, we know the answer a priori—
the contextualized word embeddings of a sentence
contain exactly the same amount of information
about syntax as does the sentence itself.

4.2 What Do Control Functions Mean?
Information-theoretically, the interpretation of con-
trol functions is also interesting. As previously
noted, our interpretation of control functions in
this work does not provide information about the
representations themselves. Actually, the same rea-
soning used in Corollary 1 could be used to devise
a function ids(r) which led from a single repre-
sentation back to the whole sentence. For a type-
level control function c, by the data-processing
inequality, we have that I(T ;W ) ≥ I(T ; c(R)).
Consequently, we can get an upper-bound on how
much information we can get out of a decontextual-
ized representation. If we assume we have perfect
probes, then we get that the true gain function is
I(T ;S) − I(T ;W ) = I(T ;S | W ). This quantity
is interpreted as the amount of knowledge we gain
about the word-level task T by knowing S (i.e., the
sentence) in addition to W (i.e., the word). There-
fore, a perfect probe would provide insights about
language and not about the actual representations,
which are no more than a means to an end.

4.3 Discussion: Ease of Extraction
We do acknowledge another interpretation of the
work of Hewitt and Liang (2019) inter alia; BERT
makes the syntactic information present in an or-
dered sequence of words more easily extractable.
However, ease of extraction is not a trivial notion to
formalize, and indeed, we know of no attempt to do
so; it is certainly more complex to determine than
the number of layers in a multi-layer perceptron
(MLP). Indeed, a MLP with a single hidden layer
can represent any function over the unit cube, with
the caveat that we may need a very large number
of hidden units (Cybenko, 1989).

Although for perfect probes the above results
should hold, in practice id(·) and c(·) may be
hard to approximate. Furthermore, if these func-
tions were to be learned, they might require an
unreasonably large dataset. A random embedding
control function, for example, would require an in-
finitely large dataset to be learned—or at least one

that contained all words in the vocabulary V . “Bet-
ter” representations should make their respective
probes more easily learnable—and consequently
their encoded information more accessible.

We suggest that future work on probing should
focus on operationalizing ease of extraction more
rigorously—even though we do not attempt this
ourselves. The advantage of simple probes is that
they may reveal something about the structure of
the encoded information—i.e., is it structured in
such a way that it can be easily taken advantage
of by downstream consumers of the contextualized
embeddings? We suspect that many researchers
who are interested in less complex probes have
implicitly had this in mind.

5 A Critique of Control Tasks

While this paper builds on the work of Hewitt and
Liang (2019), and we agree with them that we
should have control tasks when probing for lin-
guistic properties, we disagree with parts of the
methodology for the control task construction. We
present these disagreements here.

5.1 Structure and Randomness
Hewitt and Liang (2019) introduce control tasks
to evaluate the effectiveness of probes. We draw
inspiration from this technique as evidenced by our
introduction of control functions. However, we
take issue with the suggestion that controls should
have structure and randomness, to use the ter-
minology from Hewitt and Liang (2019). They
define structure as “the output for a word token is
a deterministic function of the word type.” This
means that they are stripping the language of am-
biguity with respect to the target task. In the case
of part-of-speech labeling, love would either be
a NOUN or a VERB in a control task, never both:
this is a problem. The second feature of control
tasks is randomness, i.e., “the output for each word
type is sampled independently at random.4” In
conjunction, structure and randomness may yield a
relatively trivial task that does not look at all like
natural language.

What is more, there is a closed-form solution for
an optimal, retrieval-based “probe” that has zero
parameters: 5 If a word type appears in the training
set, return the label with which it was annotated

4But not necessarily uniformly.
5Actually, to be more precise, it will have |V |+ 1 param-

eters. One for each word in the vocabulary, plus one for the
most frequent label.



there, otherwise return the most frequently occur-
ring label across all words in the training set. This
probe will achieve an accuracy that is 1 minus the
out-of-vocabulary rate (the number of tokens in the
test set that correspond to novel types divided by
the number of tokens) times the percentage of tags
in the test set that do not correspond to the most
frequent tag (the error rate of the guess-the-most-
frequent-tag classifier). In short, the best model for
a control task is a pure memorizer that guesses the
most frequent tag for out-of-vocabulary words.

5.2 What’s Wrong with Memorization?
Hewitt and Liang (2019) propose that probes
should be optimised to maximise accuracy and
selectivity. Recall selectivity is given by the dis-
tance between the accuracy on the original task and
the accuracy on the control task using the same
architecture. Given their characterization of con-
trol tasks, maximising selectivity leads to a selec-
tion of a model that is bad at memorization. But
why should we punish memorization? Much of
linguistic competence is about generalization, how-
ever memorization also plays a key role (Fodor
et al., 1974; Nooteboom et al., 2002; Fromkin et al.,
2018), with word learning (Carey, 1978) being an
obvious example. Indeed, maximizing selectivity
as a criterion for creating probes seems to artifi-
cially disfavor this property.

5.3 What Low-Selectivity Means
Hewitt and Liang (2019) acknowledge that for the
more complex task of dependency edge predic-
tion, a MLP probe is more accurate and, therefore,
preferable despite its low selectivity. However, they
offer two counter-examples where the less selective
neural probe exhibits drawbacks when compared
to its more selective, linear counterpart. We believe
both examples are a symptom of using a simple
probe rather than of selectivity being a useful met-
ric for probe selection. First, Hewitt and Liang
(2019, §3.6) point out that, in their experiments,
the MLP-1 model frequently mislabels the word
with suffix -s as NNPS on the POS labeling task.
They present this finding as a possible example of
a less selective probe being less faithful in repre-
senting what linguistic information has the model
learned. Our analysis leads us to believe that, on
contrary, this shows that one should be using the
best possible probe to minimize the chance of mis-
representation. Since more complex probes achieve
higher accuracy on the task, as evidence by the find-

ings of Hewitt and Liang (2019), we believe that the
overall trend of misrepresentation is higher for the
probes with higher selectivity. The same applies
for the second example discussed in section Hewitt
and Liang (2019, §4.2) where a less selective probe
appears to be less faithful. The authors show that
the representations on ELMo’s second layer fail to
outperform its word type ones (layer zero) on the
POS labeling task when using the MLP-1 probe.
While they argue this is evidence for selectivity be-
ing a useful metric in choosing appropriate probes,
we argue that this demonstrates yet again that one
needs to use a more complex probe to minimize
the chances of misrepresenting what the model has
learned. The fact that the linear probe shows a dif-
ference only demonstrates that the information is
perhaps more accessible with ELMo, not that it is
not present; see §4.3.

6 Experiments

We consider the task of POS labeling and use the
universal POS tag information (Petrov et al., 2012)
from the Universal Dependencies 2.4 (Nivre et al.,
2019). We probe the multilingual release of BERT6

on six typologically diverse languages: Basque,
Czech, English, Finnish, Tamil, and Turkish; and
we compute the contextual representations of each
sentence by feeding it into BERT and averaging the
output word piece representations for each word,
as tokenized in the treebank.

6.1 Control Functions

We will consider three different control functions.
Each is defined as the composition c = e ◦ id
with a different look-up function. These look-up
functions are

• efastText returns a language specific fastText
embedding (Bojanowski et al., 2017);

• eonehot returns a one-hot embedding;7

• erandom returns a fixed random embedding.8

All of these functions are type level in that they
remove the influence of the context on the word.

6We used the implementation made available by Wolf et al.
(2019)

7We initialize random embeddings at the type level, and
let them train during the model’s optimization.

8We generate the random embeddings once before the task,
at the type level. Results for this control are in the Appendix.



# Tokens bert fastText onehot

Language Train Test # POS H(T ) H(T | R) H(T | c(R)) G(T,R, c) H(T | c(R)) G(T,R, c)

Basque 71,483 23,959 16 3.18 0.31 0.30 -0.01 (0.3%) 0.82 0.51 (16.0%)
Czech 1,164,956 172,420 18 3.33 0.08 0.14 0.06 (1.8%) 0.36 0.28 (08.4%)
English 177,583 22,044 17 3.62 0.21 0.39 0.18 (5.0%) 0.64 0.43 (11.9%)
Finnish 138,695 18,263 16 3.16 0.24 0.20 -0.04 (1.3%) 0.86 0.62 (19.6%)
Tamil 5,460 1,656 14 3.21 0.58 0.69 0.11 (3.4%) 1.65 1.05 (32.7%)
Turkish 36,562 9,567 15 3.02 0.33 0.27 -0.09 (3.0%) 0.86 0.50 (16.6%)

Table 1: Amount of information shared by BERT, fastText or onehot embeddings and a POS tagging task. When put
into context, multilingual BERT does not tell us much more about syntax than trivial baselines. H(T ) is estimated
with a plug-in estimator from same treebanks we use to train the POS labelers.

6.2 Probe Architecture
As expounded upon above, our purpose is to
achieve the best bound on mutual information we
can. To this end, we employ a deep MLP as our
probe. We define the probe as

qθ(t | r) = (21)

softmax
(
W (m)σ

(
W (m−1) · · ·σ(W (1) r)

))
an m-layer neural network with the non-linearity
σ(·) = ReLU(·). The initial projection matrix is
W (1) ∈ Rr1×d and the final projection matrix is
W (m) ∈ R|T |×rm−1 , where ri = r

2i−1 . The remain-
ing matrices are W (i) ∈ Rri×ri−1 , so we half the
number of hidden states in each layer. We optimize
over the hyperparameters—number of layers, hid-
den size, one-hot embedding size, and dropout—by
using random search. For each estimate, we train
50 models and choose the one with the best valida-
tion cross-entropy. The cross-entropy in the test set
is then used as our entropy estimate.

6.3 Results
We know BERT can generate text in many lan-
guages, here we assess how much does it actually
know about syntax in those languages. And how
much more does it know than simple type-level
baselines. Tab. 1 presents this results, showing how
much information BERT, fastText and onehot em-
beddings encode about POS tagging. We see that—
in all analysed languages—type level embeddings
can already capture most of the uncertainty in POS
tagging. We also see that BERT only shares a small
amount of extra information with the task, having
small (or even negative) gains in all languages.

BERT presents negative gains in some of the anal-
ysed languages. Although this may seem to con-
tradict the information processing inequality, it is
actually caused by the difficulty of approximat-
ing id and c(·) with a finite training set—causing

KLqθ1(T | R) to be larger than KLqθ2(T | c(R)).
We believe this highlights the need to formalize
ease of extraction, as discussed in §4.3.

Finally, when put into perspective, multilingual
BERT’s representations do not seem to encode
much more information about syntax than a triv-
ial baseline. BERT only improves upon fastText in
three of the six analysed languages—and even in
those, it encodes at most (in English) 5% additional
information.

7 Conclusion

We proposed an information-theoretic formulation
of probing: we define probing as the task of es-
timating conditional mutual information. We in-
troduce control functions, which allows us to put
the amount of information encoded in contextual
representations in the context of knowledge judged
to be trivial. We further explored this formaliza-
tion and showed that, given perfect probes, probing
can only yield insights into the language itself and
tells us nothing about the representations under in-
vestigation. Keeping this in mind, we suggested a
change of focus—instead of focusing on probe size
or information, we should look at ease of extraction
going forward.

On another note, we apply our formalization to
evaluate multilingual BERT’s syntax knowledge on
a set of six typologically diverse languages. Al-
though it does encode a large amount of infor-
mation about syntax (more than 81% in all lan-
guages9), it only encodes at most 5% more infor-
mation than some trivial baseline knowledge (a
type-level representation). This indicates that the
task of POS labeling (word-level POS tagging) is
not an ideal task for contemplating the syntactic
understanding of contextual word embeddings.

9This is measured as the relative difference between H(T )
and H(T | R). On average, this value is 91%.
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Ahrenberg, Gabrielė Aleksandravičiūtė, Lene An-
tonsen, Katya Aplonova, Maria Jesus Aranzabe,
Gashaw Arutie, Masayuki Asahara, Luma Ateyah,
Mohammed Attia, Aitziber Atutxa, Liesbeth Au-
gustinus, Elena Badmaeva, Miguel Ballesteros, Esha
Banerjee, Sebastian Bank, Verginica Barbu Mititelu,
Victoria Basmov, John Bauer, Sandra Bellato, Kepa
Bengoetxea, Yevgeni Berzak, Irshad Ahmad Bhat,
Riyaz Ahmad Bhat, Erica Biagetti, Eckhard Bick,
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A Variational Bounds

Theorem 2. The estimation error between Gqθ(T,R, e) and the true gain can be upper- and lower-
bounded by two distinct Kullback–Leibler divergences.

Proof. We first find the error given by our estimate

G(T,R, e) := H(T ; c(R))−H(T | R) (22)

= Hqθ2(T | c(R))− E
r∼p(·)

KL(p(· | c(r)) || qθ2(· | c(r)))

−Hqθ1(T | R) + E
r∼p(·)

KL(p(· | r) || qθ1(· | r))

= Hqθ2(T | c(R))−KLqθ2(T, c(R))−Hqθ1(T | R) + KLqθ1(T | R)

= Hqθ2(T | c(R))−Hqθ1(T | R) + KLqθ1(T | R)−KLqθ2(T, c(R))

= Gqθ(T,R, e)︸ ︷︷ ︸
estimated gain

+ KLqθ1(T | R)−KLqθ2(T, c(R))︸ ︷︷ ︸
estimation error

Making use of this error, we trivially find an upper-bound on the estimation error as

∆ = KLqθ1(T | R)−KLqθ2(T, c(R)) (23)

≤ KLqθ1(T | R)

which follows since KL divergences are never negative. Analogously, we find a lower-bound as

∆ = KLqθ1(T | R)−KLqθ2(T, c(R)) (24)

≥ −KLqθ2(T, c(R))

B Further Results

In this section, we present accuracies for the models trained using BERT, fastText and onehot embeddings,
and the full results on random embeddings. Tab. 2 shows that both BERT and fastText present high
accuracies in all languages, except Tamil. Onehot and random results are considerably worse, as expected,
since they could not do more than take random guesses (e.g. guessing the most frequent label in the
training test) in any word which was not seen during training.

accuracies random

Language BERT fastText onehot random H(T | c(R)) G(T,R, c)

Basque 0.93 0.93 0.81 0.82 0.80 0.49 (15.4%)
Czech 0.98 0.97 0.91 0.87 0.54 0.46 (13.8%)
English 0.96 0.91 0.84 0.84 0.68 0.47 (13.0%)
Finnish 0.95 0.96 0.80 0.80 0.89 0.65 (20.6%)
Tamil 0.87 0.84 0.66 0.66 1.52 0.94 (29.3%)
Turkish 0.93 0.94 0.79 0.80 0.83 0.50 (16.6%)

Table 2: Accuracies of the models trained on BERT, fastText, onehot and random embeddings for the POS tagging
task.


